
Evaluation of Cache-based Superscalar and Cacheless Vector
Architectures for Scientific Computations

Leonid Oliker, Jonathan Carter, John Shalf, David Skinner
CRDLVERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Stephane Ethier
Princeton Plasma Physics Laboratory, Princeton Universiq, Princeton, NJ 08453

Rupak Biswas, Jahed Djomehri*, and Rob Van der Wijngaart*
NAS Division, NASA Ames Research Centec Mofett Field, CA 94035

Abstract
The growing gap between sustained and peak performance for scientific applications has become a well-known

problem in high performance computing. The recent development of parallel vector systems offers the potential to
bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing
capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based
IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the
performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we
study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor-
mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6
achieves high performance on a large fraction of our application suite and in many cases significantly outperforms
the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and
would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.

1 Introduction
The rapidly increasing peak performance and generality of superscalar cache-based microprocessors long led re-
searchers to believe that vector architectures hold little promise for future large-scale computing systems. Due to
their cost effectiveness, an ever-growing fraction of today's supercomputers employ commodity superscalar proces-
sors, arranged as systems of interconnected SMP nodes. However, the growing gap between sustained and peak
performance for scientific applications on such platforms has become well known in high performance computing.

The recent development of parallel vector systems offers the potential to bridge this performance gap for a signifi-
cant number of scientific codes, and to increase computational power substantially. This was highlighted dramatically
when the Japanese Earth Simulator System's [2] results were published [14, 15, 181. The Earth Simulator, based on
NEC SX6' vector technology, achieves five times the LINPACK performance with half the number of processors of the
IBM SP-based ASCI White, the world's fourth-most powerful supercomputer, built using superscalar technology [7].
In order to quantify what this new capability entails for scientific communities that rely on modeling and simulation, it
IS critical to evaluafe these two microarchitectural approaches in the context of demanding computational algorithms.

In this paper, we compare the performance of the NEC SX6 vector processor against the cache-based II3M Power3
and Power4 architectures for several key scientific computing areas. We begin by evaluating memory bandwidth and
MPI communication speeds, using a set of microbenchmarks. Next, we evaluate three of the well-known NAS Parallel
Benchmarks (NPB) [4, 111, using problem size Class B. Finally, we present performance results for several numerical
codes from scientific computing domains, including astrophysics, plasma fusion, fluid dynamics, magnetic fusion,
and molecular dynamics. Since most modern scientific codes are already tuned for cache-based systems, we examine
the effort required to port these applications to the vector architecture. We focus on serial and intranode parallel
performance of our application suite, while isolating processor and memory behavior. Future work will explore the
behavior of multi-node vector configurations.

7 .

'Employee of Computer Sciences Corporation.
'Also referred to as the Cray SX6 due to Cray's agreement to market NEC's SX line.

1

For non-vectorizable instructions, the SX6 contains a 500 MHz scalar processor with a 64KB instruction cache,
a 64KB data cache, and 128 general-purpose registers. The 4-way superscalar unit has a peak of 1 Gflopds and
supports branch prediction, data prefetching, and out-of-order execution. Since the SX6 vector unit is significantly
more powerful than the scalar processor, it is critical to achieve high vector operation ratios, either via compiler
discovery or explicitly through code (re-)organization.

Unlike conventional architectures, the SX6 vector unit lacks data caches. Instead of relying on data locality to
reduce memory overhead, memory latencies are masked by overlapping pipelined vector operations with memory
fetches. The SX6 uses high speed SDRAM with peak bandwidth of 32GB/s per CPU: enough to feed one operand
per cycle to each of the replicated pipe sets. Each SMP contains eight processors that share the node’s memory. The
nodes can be used as building blocks of large-scale multiprocessor systems; for instance, the Earth Simulator contains
640 SX6 nodes, connected through a single-stage crossbar.

The vector results in this paper were obtained on the single-node (8-way) SX6 system (named Rime) running
SUPER-UX at the Arctic Region Supercomputing Center (ARSC) of the University of Alaska.

3 Microbenchmarks
This section presents the performance of a microbenchmark suite that measures some low-level machine characteristics
such as memory subsystem behavior and scattedgather hardware support (using STREAM [6]); and point-to-point
communication, networklmemory contention, and barrier synchronizations (using PMB [5]).

3.1 Memory Access Performance
First we examine the low-level memory characteristics of the three architectures in our study. Table 2 presents unit-
stride memory bandwidth behavior of the triad summation: a(i) = b (i) + s x c(i), using the STREAM benchmark [6].
It effectively captures the peak bandwidth of the architectures, and shows that the SX6 achieves about 14 and 48
times the performance of the Power3 and Power4, respectively, on a single processor. Notice also that the SX6 shows
negligible bandwidth degradation for up to eight tasks, while the Power34 drop by almost 50% for fully packed nodes.

Our next experiment concerns the speed of strided data access on a single processor. Figure 1 presents our results
for the same triad summation, but using various memory strides. Once again, the SX6 achieves good bandwidth, up
to two (three) orders of magnitude better than the Power4 (Power3), while showing markedly less average variation
across the range of strides studied. Observe that certain strides impact SX6 memory bandwidth quite pronouncedly,
by an order of magnitude or more. Analysis shows that strides containing factors of two worsen performance due to
increased DRAM bank conflicts. On the Power3/4, a precipitous drop in data transfer rate occurs for small strides, due
to loss of cache reuse. This drop is more complex on the Power4, because of its more complicated cache structure.

Finally, Figure 2 presents the memory bandwidth of indirect addressing through vector triad gather and scatter op-
erations of various data sizes. For smaller sizes, the cache-based architectures show better data rates for indirect access

I P I Power3 I Power4 I SX6]

Table 2: Single-processor STREAM triad performance
(in MB/s) for unit stride -Power

*- SXb I

!

Sh-&e
Figure 1 : Single-processor STREAM triad perfor-
mance (in MB/s) using regularly strided data.

3

1 P I Power3 1 Power4 I SX6 1
31.7 12.1
54.4

r

P

Table 4: MPI synchronization overhead (in psec)

Power3 SX6
CG FT I BT CG F T BT

AM 1 L1 (TLBl AM I L1 (TLBI AM 1 L1 (TLB AM 1 AVL (VOR(AM I AVL (VOR(AM I AVL IVOR

4 Scientific Kernels: NPB

Although the CG code vectorizes fully and exhibits fairly long vector lengths, uni-processor SX6 performance is
not very good due to many bank conflicts resulting from the indirect addressing. Multi-processor SX6 speedup de-
grades as expected with the reduction in vector length. Power3 scalability is very good, mostly because uni-processor
performance is so poor due to the serious lack of data locality. FT did not perform well on the SX6 in its original
form, because the computations used a fixed block length of 16 words. But once the code was modified to use a block
length equal to the size of the grid (only three lines changed), SX6 uni-processor performance improved markedly due
to increased vector length. Speedup from one to two processors was not good due to the time spent in a routine that
does a local data transposition to improve data locality for cache based machines (this routine was not called in the
uni-processor run), but subsequent scalability was excellent. Power3 scalability was fairly good overall, despite the
large communication volume, due to improved data locality of the multi-processor implementation. The BT baseline
MPI code performed poorly on the SX6, because subroutines in inner loops inhibited vectorization. Also, some inner
loops of small fixed length were vectorized, leading to very short vector lengths. Subroutine inlining and manual
expansion of small loops leads to long vector lengths throughout the single-processor code, and good performance.
Increasing the number of processors on the SX6 causes reduction of vector length (artifact of the three-dimensional
domain decomposition) and a concomitant deterioration of the speedup. Power3 scalability is fair up to 9 processors,
but degrades severely on 16 processors. The reason is the fairly large number of synchronizations per time step that
are costly on a fully saturated 16-processor Power3 node. Experiments with a two-node computation involving 25
processors show a remarkable recovery of the speedup.

5

P
1

Power3 Power4 SX6
Mflopds I L1 1 TLB Mflops/s 1 L1 1 TLB Mflops/s 1 AVL 1 VOR

273.8 I 99.4 I .030 672.1 I 92.2 1 .01 3912. 1 126.7 I 99.6
2
4
8
16

7 Plasma Fusion: TLBE

236.2 99.4 .030 582.4 92.6 .01 3500. 126.7 99.5
248.9 99.4 .020 618.8 93.2 .01 2555. 126.7 99.5
251.4 99.4 .030 599.6 92.4 .01 2088. 126.7 99.3
226.5 99.5 .020 537.6 93.0 .01

Lattice Boltzmann methods provide a mesoscopic description of the transport properties of physical systems using a
linearized Boltzmann equation. They offer an efficient way to model turbulence and collisions in a fluid. The TLBE
application [161 perforns a 2D simulation of high-temperature plasma using a hexagonal lattice and the BGK collision

321 - I -

operator.

- I 379.4 1 97.0 I .OO

7.1 Methodology
The TLBE simulation has three computationally demanding components: computation of the mean macroscopic vari-
ables (integration); relaxation of the macroscopic variables after colliding (collision); and propagation of the macro-
scopic variables to neighboring grid points (stream). The first two steps are floating-point intensive, the third consists
of data movement only. The problem is ideally suited for vector architectures. The first two steps are completely
vectorizable, since the computation for each grid point is purely local. The third step consists of a set of strided copy
operations. In addition, distributing the grid via a 2D decomposition easily paraIleIizes the method. The first two steps
require no communication, while the third has a regular, static communication pattern in which the boundary values
of the macroscopic variables are exchanged.

7.2 Porting Details
After initial profiling on the SX6 using basic vectorization compiler options (- C vop t), a poor result of 280 Mff ops/s
was achieved for a small 642 grid using a serial version of the code. f trace showed that VOR was high (95%) and
that the collision step dominated the execution time (96% of total); however, AVL was only about 6. We found that
the inner loop over the number of directions in the hexagonal lattice had been vectorized, but not a loop over one of
the grid dimensions. Invoking the most aggressive compiler flag (- C hopt) did not help. Therefore, we rewrote the
collision routine by creating temporary vectors, and inverted the order of two loops to ensure vectorization over one
dimension of the grid. As a result, serial performance improved by a factor of 7, and the parallel TLBE version was
created by inserting the new collision routine into the MPI version of the code.

7.3 Performance Results
Parallel TLBE performance using a production grid of 20482 is presented in Table 7. The SX6 results show that
TLBE achieves almost perfect vectorization in terms of AVL and VOR. The 2- and 4-processor runs show similar
performance as the serial version; however, an appreciable degradation is observed when running 8 MPI tasks, which
is most likely due to networWmemory contention in the SMP.

For both the Power3 and Power4 architectures, the collision routine rewritten for the SX6 performed somewhat
better than the original. On the cache-based machines, the parallel TLBE showed higher Mflopsls (per CPU) compared
with the serial version. This is due to the use of smaller grids per processor in the parallel case, resulting in improved
cache reuse. The more complex behavior on the Power4 is due to the competitive effects of the three-level cache

7

,

P
2

AVL and limited VOR explain why the code achieves a maximum of only 1.9 Gflopsh on 8 processors. Reorganizing
OVERFLOW-D would achieve higher vector performance; however, extensive effort would be required to modify this
production code.

sec 1 L1 1 TLB 1 sec sec [AVL 1 VOR
46.7 I 93.3 I .245 1 15.8 5.5 1 87 I 80% -

69%

3.4

Table 8: Performance of OVERFLOW-D on a 8 million-grid point problem

9 Magnetic Fusion: GTC
The goal of magnetic fusion is the construction and operation of a burning plasma power plant producing clean energy.
The performance of such a device is determined by the rate at which the energy is transported out of the hot core to
the colder edge of the plasma. The Gyrokinetic Toroidal Code (GTC) E131 was developed to study the dominant
mechanism for this transport of thermal energy, namely plasma microturbulence. Plasma turbulence is best simulated
by particle codes, in which all the nonlinearities are naturally included.

9.1 Methodology
GTC solves the gyroaveraged Vlasov-Poisson (gyrokinetic) system of equations [121) using the particle-in-cell ap-
proach. Instead of interacting with each other, the simulated particles interact with a self-consistent electrostatic or
electromagnetic field described on a grid. Numerically, the PIC method scales as N, instead of N 2 as in the case
of direct binary interactions. Also, the equations of motion for the particles are simple ODES (rather than nonlinear
PDEs), and can be solved easily (e.g. Runge-Kutta). The main tasks at each time step are: deposit the charge of each
particle at the nearest grid points (scatter); solve the Poisson equation to get the potential at each grid point; calculate
the force acting on each particle from the potential at the nearest grid points (gather); move the particles by solving
the equations of motion; find the particles that have moved outside their local domain and migrate them accordingly.

The parallel version of GTC performs well on massive superscalar systems, since the Poisson equation is solved
as a local operation. The key performance bottleneck is the scatter operation, a loop over the array containing the
position of each particle. Based on a particle’s position, we find the nearest grid points surrounding it and assign each
of them a fraction of its charge proportional to the separation distance. These charge fractions are then accumulated
in another array. The scatter algorithm in GTC is complicated by the fact that these are fast gyrating particles, where
motion is described by charged rings being tracked by their guiding center (the center of the circular motion).

9.2 Porting Details

GTC’s scatter phase presented some challenges when porting the code to the SX6 architecture. It is difficult to im-
plement efficiently due to its non-contiguous writes to memory. The particle array is accessed sequentially, but its
entries correspond to random locations in the simulation space. As a result, the grid array accumulating the charges
is accessed in random fashion, resulting in poor cache performance. This problem is exacerbated on vector architec-
tures, since many particles deposit charges at the same grid point, causing a classic memory dependence problem and
preventing vectorization. We avoid these memory conflicts by using temporary arrays of vector length (256 words) to
accumulate the charges. Once the loop is completed, the information in the temporary array is merged with the real
charge data; however, this increases memory traffic and reduces the flophyte ratio.

Another source of performance degradation was a short inner loop located inside two large particle loops that the
SX6 compiler could not vectorize. This problem was solved by inserting a vectorization directive, fusing the inner and
outer loops. Finally, I/O within the main loop had to be removed in order to allow vectorization.

9

I
i

sec I L1 I TLB
15.7 I 99.8 I 0.01

the scalar unit. The BUILD-TEMP (also used on the Power3/4) approach increases VOR, but incurs the overhead of
increased memory traffic for storing temporary arrays. In general, this class of applications is at odds with vectorization
due to the irregularly structured nature of the codes. The SX6 achieves only 165 Mflops/s, or 2% of peak, slightly
outperforming the Power3 and trailing the Power4 by about a factor of two in runtime. Effectively utilizing the SX6
would likely require extensive reengineering of both the algorithm and the code.

sec 1 L1 I TLB sec I AVL 1 VOR sec I AVL I VOR
7.8 I 98.8 I .001 19.7 1 78 I 0.03% 16.1 I 134 I 34.8%

Lines Power3
Name Discipline ofCode %Pk

Cactus-ADM Astrophysics 1200 16.7
TLBE Plasma Fusion 1500 7.3

Power4 SX6 SX6 Speedup vs.
%Pk %Pk P Power3 Power4
11.5 26.1 8 14 5.8
9.0 38.1 8 27.8 6.5

Table 10: Serial performance of Mindy on a 92224-atom system with two different SX6 optimization approaches

OVERFLOW-D
GTC

Mindy

11 Summary and Conclusions

FluidDynamics 100000 13.0 10.1 24.3 8 5.0 3.7
Magnetic Fusion 5000 1 1.1 6.3 4.9 8 2.3 1.2

Molecular Dynamics 11900 6.3 4.7 2.1 1 1.0 0.5

Table 1 1 : Summary overview of application suite performance

The rest of our applications required the insertion of compiler directives and/or minor code modifications to im-
prove the two critical components of effective vectorization: long vector length and high vector operation ratio. Vector
optimization strategies included loop fusion (and loop reordering) to improve vector length; introduction of tempo-
rary variables to break loop dependencies (both real and compiler imagined); reduction of conditional branches; and
alternative algorithmic approaches. For codes such as TLBE, minor code changes were sufficient to achieve good
vector performance and a high percentage of theoretical peak, especially for the multi-processor computations. For
OVERFLOW-D, we obtained decent performance on both the cache-based and vector machines, but algorithmic sup-
port for these different architectures required substantial differences in programming styles. Some experiments were
also carried out with hybrid programming (MPI plus OpenMP), but this had negligible benefit; these results were not
reported.

Finally, we presented two applications with poor vector performance: GTC and Mindy. They feature indirect
addressing, many conditional branches, and loop carried data-dependencies, making high vector performance chal-
lenging. This was especially true for Mindy, whose use of C++ objects made it difficult for the compiler to identify

